

OZONOLYSIS APPLICATIONS

Green Chemistry • Selective Oxidation • Sustainable Processes

INTRODUCTION

Ozonolysis is a key reaction in modern chemical and pharmaceutical industries, where ozone (O_3) is used as a powerful oxidant to cleave double bonds in alkenes and other organic compounds. Traditionally, oxidation relied on harsh reagents such as permanganates, chromates, or chlorine-based chemicals—leading to toxic byproducts and waste.

With ozone, industries can achieve high selectivity, cleaner reactions, and eco-friendly production, making it an essential tool in fine chemicals, pharmaceuticals, fragrances, and advanced materials.

How It Works?

01 Ozone Generation

Oxygen is converted into ozone using high-purity ozone generators

02 Reaction Stage

Ozone reacts with unsaturated bonds (C=C) in alkenes, producing ozonides

03 Work-Up / Quench

The ozonide is reduced or oxidized further, depending on the desired products

04 Residue Free

Ozone decomposes back to oxygen, avoiding chlorine-based by-products

Benefits at a Glance

High Selectivity

Precisecleavageofdouble bonds

OH

"OH

Eco-Friendly

Replacestoxicoxidizing chemicals with clean ozone

No Chlorinated Waste

Reduces environmental burden from halogenated by-products

Flexible Applications

Canbeadaptedforliquidor gas-phase reactions

Scalable

Fromlab-scale R&D to full industrial production

Applications of Ozonolysis

Pharmaceuticals

Production of intermediates, APIs (Active Pharmaceutical Ingredients)

Fine Chemicals

Aldehydes, ketones, acids for specialty chemistry

Fragrances & Flavors

Creation of key aroma compounds

Polymers & Materials

Surface activation and modification

Green Chemistry

Alternative to hazardous oxidants for sustainable synthesis

Technical Notes

(Indicative Range – customizable)

Ozone Output Range

10 g/h to 100 g/h (lab/pilot) up to 1-5 kg/h (industrial)

Feed Gas
Oxygen-fed systems for high-purity applications

Reaction Medium

Gas-phase ozonolysis or dissolved ozone in solvents

Process Control

Requires precision dosing and temperature monitoring

Designed with ozone destruct units and closed-loop systems

Safety First

Recommended Products

(as per requirements we suggest)

Oxipure CDI Series

High-precision ozone generators for chemical applications

02 Oxipure Membrel

Compact electrochemical ozone generators ideal for high-purity lab and pharma use

03 Ozone Gas Analysers

For precise monitoring of ozone dosage in reactions

04 Ozone Mixing Systems

For efficient gas-liquid or solvent- phase integration

Conclusion

Ozonolysis isa cornerstoneofgreen chemistry offering selective, efficient, and sustainable oxidation without harmful by-products. With Croissance's advanced ozone systems, industries can scale ozonolysis from laboratory research to full production with safety, precision, and reliabilit

Your Next Step

Experience the future of safe, sustainable sterilisation.

7047023786 / 8000023786

croissancecorp@yahoo.com croissancecorp@gmail.com

